Электромагнитная индукция. ЭДС индукции в движущихся проводниках — Гипермаркет знаний Эдс индукции в движущихся прямолинейных проводниках рисунок

Прямолинейный проводник АВ движется в магнитном поле с индукцией В по проводящим шинам, которые замкнуты на гальванометр.

На электрические заряды, перемещающиеся вместе с проводником в магнитном поле, действует сила Лоренца:

Fл = /q/vB sin a

Её направление можно определить по правилу левой руки.

Под действием силы Лоренца внутри проводника происходит распределение положительных и отрицательных зарядов вдоль всей длины проводника l
Сила Лоренца является в данном случае сторонней силой, и в проводнике возникает ЭДС индукции, а на концах проводника АВ возникает разность потенциалов.

Причина возникновения ЭДС индукции в движущемся проводнике объясняется действием силы Лоренца на свободные заряды.

Готовимся к проверочной работе!

1. При каком направлении движения контура в магнитном поле в контуре будет возникать индукционный ток?

2. Укажите направление индукционного тока в контуре при введении его в однородное магнитное поле.

3. Как изменится магнитный поток в рамке, если рамку повернуть на 90 градусов из положения 1 в положение 2 ?

4. Будет ли возникать индукционный ток в проводниках, если они движутся так, как показано на рисунке?

5. Определить направление индукционного тока в проводнике АБ, движущемся в однородном магнитном поле.

6. Указать правильное направление индукционного тока в контурах.




Электромагнитное поле - Класс!ная физика

Возникновение в проводнике ЭДС индукции

Если поместить в проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет , называемая ЭДС индукции .

ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.

Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током.

Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией .

Электромагнитная индукция - это обратный процесс, т. е. превращение механической энергии в электрическую.

Явление электромагнитной индукции нашло широчайшее применение в . На использовании его основано устройство различных электрических машин.

Величина и направление ЭДС индукции

Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС.

Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле.

Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле.

Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля. Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле.

Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

Зависимость эта выражается формулой Е = Blv,

где Е - ЭДС индукции; В - магнитная индукция; I - длина проводника; v - скорость движения проводника.

Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля. Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля.

Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник. Для определения направления индуктированной ЭДС существует правило правой руки.

Если держать ладонь правой руки так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец указывал бы направление движения проводника, то вытянутые четыре пальца укажут направление действия индуктированной ЭДС и направление тока в проводнике.

Правило правой руки

ЭДС индукции в катушке

Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку.

При движении внутри постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.

Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки. Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита.

И, наконец, если вводить с одинаковой скоростью один и тот же магнит сначала в катушку с большим числом витков, а затем со значительно меньшим, то в первом случае стрелка прибора отклонится на больший угол, чем во втором. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от числа ее витков. Те же результаты можно получить, если вместо постоянного магнита применять электромагнит.

Направление ЭДС индукции в катушке зависит от направления перемещения магнита. О том, как определять направление ЭДС индукции, говорит закон, установленный Э. X. Ленцем.

Закон Ленца для электромагнитной индукции

Всякое изменение магнитного потока внутри катушки сопровождается возникновением в ней ЭДС индукции, причем чем быстрее изменяется магнитный поток, пронизывающий катушку, тем большая ЭДС в ней индуктируется.

Если катушка, в которой создана ЭДС индукции, замкнута на внешнюю цепь, то по виткам ее идет индукционный ток, создающий вокруг проводника магнитное поле, в силу чего катушка превращается в соленоид. Получается таким образом, что изменяющееся внешнее магнитное поле вызывает в катушке индукционный ток, которой, в свою очередь, создает вокруг катушки свое магнитное поле - поле тока.

Изучая это явление, Э. X. Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока.

Закон Ленца справедлив для всех случаев индуктирования тока в проводниках, независимо от формы проводников и от того, каким способом достигается изменение внешнего магнитного поля.


При движении постоянного магнита относительно проволочной катушки, присоединенной к клеммам гальванометра, или при движении катушки относительно магнита возникает индукционный ток.

Индукционные токи в массивных проводниках

Изменяющийся магнитный поток способен индуктировать ЭДС не только в витках катушки, но и в массивных металлических проводниках. Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти так называемые распространяются по массивному проводнику и накоротко замыкаются в нем.

Сердечники трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами. Явление это нежелательно, поэтому для уменьшения величины индукционных токов части электрических машин и сердечники трансформаторов делают не массивными, а состоящими из тонких листов, изолированных один от другого бумагой или слоем изоляционного лака. Благодаря этому преграждается путь распространения вихревых токов по массе проводника.

Но иногда на практике вихревые токи используются и как токи полезные. На использовании этих токов основана, например, работа , и так называемых магнитных успокоителей подвижных частей электроизмерительных приборов.

Или, наоборот, перемещающееся магнитное поле пересекает неподвижный проводник; или когда проводник и магнитное поле, двигаясь в пространстве, перемещаются один относительно другого;

  • Когда переменное магнитное поле одного проводника, действуя на другой проводник, индуктирует в нем ЭДС (взаимоиндукция);
  • Когда изменяющееся магнитное поле индуктирует в енм самом ЭДС (самоиндукция).
  • Таким образом, всякое изменение во времени величины , пронизывающего замкнутый контур (виток, рамку), сопровождается появлением в проводнике индуктированной ЭДС.

    A = U × I × t = I ² × r × t (Дж) .

    Затрачиваемая мощность будет равна:

    P эл = U × I = I ² × r (Вт) ,

    откуда определяем ток в цепи:

    (1)

    Однако нам известно, что проводник с током, помещенный в магнитное поле, будет испытывать силу со стороны поля, стремящуюся перемещать в направлении, определяемом правилом левой руки. При своем движении проводник будет пересекать магнитные силовые линии поля и в нем по закону электромагнитной индукции возникнет индуктированная ЭДС. Направление этой ЭДС, определенное по правилу правой руки, будет обратным току I . Назовем ее обратной ЭДС E обр. Величина E обр согласно закону электромагнитной индукции будет равна:

    E обр = B × l × v (В) .

    По для замкнутой цепи имеем:

    U - E обр = I × r

    U = E обр + I × r , (2)

    откуда ток в цепи

    (3)

    Сравнивая выражения (1) и (3), видим, что в проводнике, движущемся в магнитном поле, при одних и тех же значениях U и r ток будет меньше, чем при неподвижном проводнике.

    Умножая полученное выражение (2) на I , получим:

    U × I = E обр × I + I ² × r .

    Так как E обр = B × l × v , то

    U × I = B × l × v × I + I ² × r .

    Учитывая, что B × l × I = F и F × v = P мех, имеем:

    U × I = F × v + I ² × r

    P = P мех + P эм.

    Последнее выражение показывает, что при движении проводника с током в магнитном поле мощность источника напряжения преобразуется в тепловую и механическую мощности.

    При движении прямолинейного проводника в магнитном поле на концах проводника возникает э. д. с. индукции. Ее можно вычислить не только по формуле , но и по формуле э. д. с.

    индукции в прямолинейном проводнике. Она выводится так. Приравняем формулы (1) и (2) § 97:

    BIls = EIΔt, отсюда


    где s / Δt = v есть скорость перемещения проводника. Поэтому э. д. с. индукции при движении проводника перпендикулярно к силовым линиям магнитного поля

    E = Blv.

    Если проводник движется со скоростью v (рис. 148, а), направленной под углом α к линиям индукции, то скорость v разлагается на составляющие v 1 и v 2 . Составляющая направлена вдоль линий индукции и при движении проводника не вызывает в нем э. д. с. индукции. В проводнике э. д. с. индуктируется только за счет составляющей v 2 = v sin α , направленной перпендикулярно к линиям индукции. В этом случае э. д. с. индукции будет

    Е = Вlv sin α.

    Это и есть формула э. д. с. индукции в прямолинейном проводнике.

    Итак, при движении прямолинейного проводника в магнитном поле в нем индуктируется э. д. с., величина которой прямо пропорциональна активной длине проводника и нормальной составляющей скорости его движения.

    Если вместо одного прямого проводника взять рамку, то при ее вращении в однородном магнитном поле возникнет э. д. с. в двух ее сторонах (см. рис. 138). В этом случае э. д. с. индукции будет Е = 2 Blv sin α . Здесь l - длина одной активной стороны рамки. Если последняя состоит из n витков, то в ней возникает э. д. с. индукции

    E = 2nBlv sin α.

    То, что э. д. с. индукции зависит от скорости v вращения рамки и от индукции В магнитного поля, можно видеть на таком опыте (рис. 148, б). При медленном вращении якоря генератора тока лампочка горит тускло: возникла малая э. д. с. индукции. При увеличении скорости вращения якоря лампочка горит ярче: возникает большая э. д. с. индукции. При той же скорости вращения якоря удалим один из магнитов, уменьшив тем самым индукцию магнитного поля. Лампочка горит тускло: э. д. с. индукции уменьшилась.

    Задача 35. Прямолинейный проводник длиной 0,6 м гибкими проводниками присоединен к источнику тока, э. д. с. которого 24 в и внутреннее сопротивление 0,5 ом. Проводник находится в однородном магнитном поле с индукцией 0,8 тл, линии индукции которого направлены к читателю (рис. 149). Сопротивление всей внешней цепи 2,5 ом . Определить силу тока в проводнике, если он движется перпендикулярно к линиям индукции со скоростью 10 м / сек. Чему равна сила тока в неподвижном проводнике?

    После выяснения природы ЭДС индукции, возникающей в неподвижном проводнике, находящемся в изменяющемся магнитном поле, мы узнали о свойствах электрического поля, отличающегося от того, что создаётся точечными зарядами. Также мы узнали о том, что работа по замкнутому контуру в поле, создаваемом точечными зарядами, равна нулю, а в вихревом поле не равна нулю. Именно это поле вызывает ЭДС в проводнике. Однако, если проводник будет двигаться в постоянном магнитном поле, на концах проводника возникнет разность потенциалов, там тоже возникнет ЭДС. Но природа этой силы будет другая. На этом уроке мы выясним природу ЭДС в проводнике, движущемся в магнитном поле.

    Тема: Электромагнитная индукция

    Урок: Движение проводника в магнитном поле

    Для того чтобы установить природу силы в проводнике, который движется в магнитном поле, проведём эксперимент. Предположим, что в вертикальном однородном магнитном поле с индукцией () расположен горизонтальный проводник длиной (l ), который движется с постоянной скоростью () перпендикулярно вектору магнитной индукции магнитного поля. Если подсоединить к концам этого проводника чувствительный вольтметр, то увидим, что он покажет наличие разности потенциалов на концах этого проводника. Выясним, откуда берётся это напряжение. В данном случае нет контура и нет изменяющегося магнитного поля, поэтому мы не может сказать, что движение электронов в проводнике возникло в результате появления вихревого электрического поля. Когда проводник движется, как единое целое (рис. 1), у зарядов проводника и у положительных ионов, которые находятся в узлах кристаллической решётки, и у свободных электронов возникает скорость направленного движения.

    Рис. 1

    На эти заряды будет действовать сила Лоренца со стороны магнитного поля. Согласно правилу «левой руки»: четыре пальца, расположенные по направлению движения, ладонь разворачиваем так, чтобы вектор магнитной индукции входил в тыльную сторону, тогда большой палец укажет действие силы Лоренца на положительные заряды.

    Сила Лоренца, действующая на заряды, равна произведению модуля заряда, который она переносит, умноженной на модуль магнитной индукции, на скорость и синус угла между вектором магнитной индукции и вектором скорости.

    Эта сила будет совершать работу по переносу электронов на малые расстояния вдоль проводника.

    Тогда полная работа силы Лоренца вдоль проводника будет определяться силой Лоренца, умноженной на длину проводника.

    Отношение работы сторонней силы по перемещению заряда к величине перенесённого заряда по определению ЭДС.

    (4)

    Итак, природа возникновения ЭДС индукции - это работа силы Лоренца . Однако, формулу 10.4. можно получить формально, исходя из определения ЭДС электромагнитной индукции, когда проводник перемещается в магнитном поле, пересекая линии магнитной индукции, перекрывая некоторую площадку, которую можно определить как произведение длины проводника на перемещение, которое можно выразить через скорость и время движения. ЭДС индукции по модулю равно отношению изменения магнитного потока ко времени.

    Модуль магнитной индукции постоянный, но изменяется площадь, которая покрывает проводник.

    После подстановки, выражения в формулу 10.5. и сокращения получим:

    Сила Лоренца, действующая вдоль проводника, за счёт чего происходит перераспределение зарядов - это лишь одна составляющая сил. Также имеется вторая составляющая, которая возникает именно в результате движения зарядов. Если электроны начинают перемещаться по проводнику, а проводник находится в магнитном поле, то тогда начинает действовать сила Лоренца, и направлена она будет против движения скорости проводника. Таким образом, суммирующая сила Лоренца будет равна нулю.

    Полученное выражение для ЭДС индукции, возникающей при движении проводника в магнитном поле, можно получить и формально, исходя из определения. ЭДС индукции равно скорости изменения магнитного потока за единицу времени, взятого со знаком минус.

    Когда неподвижный проводник находится в изменяющемся магнитном поле и когда сам проводник движется в постоянном магнитном поле, возникает явление электромагнитной индукции . И в том, и в другом случае возникает ЭДС индукции. Однако природа этой силы различна.

    1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416 с.: ил., 8 л. цв. вкл.
    2. Тихомирова С.А., Яровский Б.М., Физика 11. - М.: Мнемозина.
    3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
    1. Fizportal.ru ().
    2. Eduspb.com ().
    3. Классная физика ().

    Домашнее задание

    1. Касьянов В.А., Физика 11 кл.: Учебн. для общеобразоват. учреждений. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 416 с.: ил., 8 л. цв. вкл., ст. 115, з. 1, 3, 4, ст. 133, з. 4.
    2. Вертикальный металлический стержень длиной 50 см движется горизонтально со скоростью 3 м/с в однородном магнитном поле с индукцией 0,15 Тл. Линии индукции магнитного поля направлены горизонтально под прямым углом к направлению вектора скорости стержня. Чему равна ЭДС индукции в стержне?
    3. С какой минимальной скоростью необходимо двигать в однородном магнитном поле с магнитной индукцией 50 мТл стержень длиной 2 м, чтобы в стержне возникла ЭДС индукции 0,6 В?
    4. * Квадрат, изготовленный из провода длиной 2 м, движется в однородном магнитном поле с индукцией 0,3 Тл (рис. 2). Какова ЭДС индукции в каждой со сторон квадрата? Общая ЭДС индукции в контуре? υ = 5 м/с, α = 30°.

    Загрузка...
    Top